Extensions 1→N→G→Q→1 with N=C22×Dic3 and Q=D5

Direct product G=N×Q with N=C22×Dic3 and Q=D5
dρLabelID
C22×D5×Dic3240C2^2xD5xDic3480,1112

Semidirect products G=N:Q with N=C22×Dic3 and Q=D5
extensionφ:Q→Out NdρLabelID
(C22×Dic3)⋊1D5 = C2×D10⋊Dic3φ: D5/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3):1D5480,611
(C22×Dic3)⋊2D5 = (C2×C30).D4φ: D5/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3):2D5480,612
(C22×Dic3)⋊3D5 = C2×D304C4φ: D5/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3):3D5480,616
(C22×Dic3)⋊4D5 = C10.(C2×D12)φ: D5/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3):4D5480,618
(C22×Dic3)⋊5D5 = Dic3×C5⋊D4φ: D5/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3):5D5480,629
(C22×Dic3)⋊6D5 = C1528(C4×D4)φ: D5/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3):6D5480,632
(C22×Dic3)⋊7D5 = (C2×C6)⋊D20φ: D5/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3):7D5480,645
(C22×Dic3)⋊8D5 = C2×Dic5.D6φ: D5/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3):8D5480,1113
(C22×Dic3)⋊9D5 = C22×C3⋊D20φ: D5/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3):9D5480,1119
(C22×Dic3)⋊10D5 = C22×D30.C2φ: trivial image240(C2^2xDic3):10D5480,1117

Non-split extensions G=N.Q with N=C22×Dic3 and Q=D5
extensionφ:Q→Out NdρLabelID
(C22×Dic3).1D5 = C30.24C42φ: D5/C5C2 ⊆ Out C22×Dic3480(C2^2xDic3).1D5480,70
(C22×Dic3).2D5 = C23.26(S3×D5)φ: D5/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3).2D5480,605
(C22×Dic3).3D5 = C2×C30.Q8φ: D5/C5C2 ⊆ Out C22×Dic3480(C2^2xDic3).3D5480,617
(C22×Dic3).4D5 = C2×Dic155C4φ: D5/C5C2 ⊆ Out C22×Dic3480(C2^2xDic3).4D5480,620
(C22×Dic3).5D5 = C2×C6.Dic10φ: D5/C5C2 ⊆ Out C22×Dic3480(C2^2xDic3).5D5480,621
(C22×Dic3).6D5 = (C2×C10)⋊8Dic6φ: D5/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3).6D5480,651
(C22×Dic3).7D5 = C22×C15⋊Q8φ: D5/C5C2 ⊆ Out C22×Dic3480(C2^2xDic3).7D5480,1121
(C22×Dic3).8D5 = C2×Dic3×Dic5φ: trivial image480(C2^2xDic3).8D5480,603

׿
×
𝔽